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Abstract. We study the supersymmemc Gelfand-Dickey algebras associated with the 
superpseudodifferential operators of positive, as well as negative, leading order. We show 
that, upon the usual constraint, these algebras contain the N = 2 super Virasoro algebra as a 
subalgebra when the leading order is odd. The decompositions of the coefficient functions 
into N = 1 primary fields are then oblained by covariantizing the superpseudodifferentid 
operators. We discuss the problem of identifying N = 2 supermultiplets and work out a couple 
of supermultiplets by explicit Computations. 

1. Introduction 

The relevance of the study of W-algebras in two-dimensional conformal field theory is 
now quite clear. The quantum W-algebras were first intoduced by Zamolodchikov as 
extensions of conformal symmetry [l]. Soon after this work, it was realized that the classical 
W,-algebras arise quite naturally as the exotic Hamiltonian structures for the generalized 
KdV hierarchies [2-7]. These Hamiltonian structures can be elegantly expressed by the 
second Gelfand-Dickey bracket defined by differential operators [&lo]. Extensions of the 
Gelfand-Dickey bracket for pseudodifferential operators give a class of W-type algebras 
called W$$ which are the Hamiltonian structures of the Kp hierarchy [ll-151. Recently, the 
supersymmetric version of the second Gelfand-Dickey brackets were constructed [ 16-19]. 
A series of N = 1 and N = 2 W-superalgebras have been obtained from the brackets 
defined by superdifferential operators. 

In this paper, we study the superalgebras arising from the second Gelfand-Dickey 
brackets defined by superpseudodifferential operators [ZO-ZZ]. These superalgebras, to our 
knowledge, are still unexplored. Our main motivation comes from the fact that, in the 
bosonic case, all hitherto known W,-type algebras can be obtained from W$ and its 
‘analytic continuation’ W$ [23] via reductions, contractions or truncations [24]. Thus, we 
believe that the superalgebras from superpseudodifferential operators could possibly lead to 
an interesting super version of WW-type algebras. The first aim of this paper is, therefore, to 
find the N = 2 analogue of WZ;. To this purpose, we consider the usual reduction of these 
superalgebras. We find that it is possible when the leading order is an (positive or negative) 
odd integer. In other words, in this case, these superalgebras contain the N = 2 super 
Virasoro algebra as a subalgebra In order to see whether these superalgebras are genuine 
N = 2 W-superalgebras or not, we need to identify the required N = 2 supermultiplets. 
This is a very difficult task. We know that in the case of ordinary (pseud0)differential 
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operators, the desired primary fields can easily be obtained by putting the operators into 
a conformally covariant form [U, 261. However, the superconformally covariant form of 
superdifferential operators can only give us the decompositions of coefficient functions 
into N = 1 primary fields due to the fact that these superoperators are defined on the 
(111) superspace 127,281. The N = 2 supermultiplets can be identified only if we further 
compute the Hamiltonian flow defined by the spin-1 current and redefine the N = 1 pnmaq 
fields properly. The last step is where the difficulty lies since there is so far no systematic 
way of handling the spin-I flow. Therefore, these N = 2 supermultiplets have never 
been completely identified. Despite this, we have still carried out the superconformal 
covariantization program for the superpseudodifferential operators to obtain the series of 
N = 1 primary fields. Then, we discuss the problem of identifying N = 2 supermultiplets. 
In fact, we show that the identification problem for the case of leading order 2m + 1 is 
equivalent to that for the case of leading order -2m - 1. Moreover, two supermultiplets 
are identified by explicit computations. 

We organize this paper as follows. In section 2, we introduce the second Gelfand- 
Dickey bracket for superpseudodifferential operators and show that a reduction yields the 
N = 2 super Virasoro algebra if the leading order is odd. In section 3, we prove that 
the action of a superconformal transformation on the superpseudodifferential operator is 
nothing but a Hamiltonian flow defined by the second Gelfand-Dickey bracket. The 
superconformally covariant form of the superpseudodifferential operators is obtained. In 
section 4, we identify the first two N = 2 supermultiplets of the negative part of an odd- 
order superpseudodifferential operator. We present our concluding remarks in section 5. 

2. Superpseudodifferential operators and the second Gelfand-Dickey bracket 

We consider the superdifferential operators on a (1 11) superspace with coordinate ( x .  e). 
These operators are polynomials in the supercovariant derivative D = a, + ea,, whose 
coefficients are N = 1 superfields, i.e. 

L = D" + uID"-' + UzD"-Z + . . . + U" + U,+'D-' + . . . (2.1) 

where n is a non-zero integer (can be negative). As usual, we assume that they are 
homogeneous under the usual Zz grading; that is, ]Ui[ = i (mod2). The bracket will 
involve functionals of the form 

where f ( U )  is a homogeneous (under Z2 grading) differential polynomial of the Ut's and 
JB = J & d Q  is the Berezin integral which is defined in the usual way, namely, if we 
write Uj = uj + @ v i  and f(U) = a(u,  U) + @b(u, U), then 1, f(U) = Jdx b(u, U). The 
multiplication is given by the super Leibnitz rule 

(2.3) 

where k is an arbitrary integer and 4['l = (D'4) and the superbinomial coefficients [:] are 
defined by 

for i < 0 or (k ,  i) = (0, 1) (mod2) 
(2.4) k - i  
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where (:) is the ordinary binomial coefficient. Next, we introduce the notion of super- 
residue and supertrace. Given a superpseudodifferential operator P = C p;Di ,  we define 
its super-residue sres P = p-1 and its supertrace as Str P = lB sres P. In the usual manner, 
it can be shown that the supertrace of a supercommutator vanishes, i.e. Str[P, Q] = 0, 
where [ P .  Q] = P Q  - (-l)lpllQIQP. Finally, for a given functional FLU] = JB f(U), we 
define its gradient d F  by 

where 

Equipped with these notions, we now define the supersymmetric second Gelfand-Dickey 
bracket as 

(F, G] = (-I)lF1+JG'+nStr[L(dFL)+dG - (LdF)+LdG] (2.7) 

where ()+ denotes the differential part of a superpseudodifferential operator. It has been 
shown that (2.7) indeed defines a Hamiltonian structure: it is antisupersymmetric and 
satisfies the super-Jacobi identity [20-223. 

When n is positive and when Un+I = Un+2 = . . . = 0 (i.e. when L is a superdifferential 
operator), it can be shown that when the constraint U1 = 0 is imposed, the induced bracket 
is well defined only when n is odd [17]. The reason is that this constraint is second class 
when n is odd, while it becomes first class for even n. To compute these induced brackets, 
we need to modify at least one of d F  and dG defined by (2.5) due to the absence of U,. 
The prescription is to add a term D-"V to, say, dG in such a way that 

sres[L, D-"V + dG1 = 0. (2.8) 

We shall denote X G  = D-"V + dG for this choice of V. Replacing dG in (2.7) by X G  
then gives the induced bracket. It has been shown that if we define (of course, only when 
n 2 3) 

T = U3 - LU' 2 J=uz (2.9) 

where V' = ( D V ) ,  V" = (D'V) ,  . . . etc, then T and J obey the N = 2 super Virasoro 
algebra 

( T ( X ) ,  T ( Y ) ]  = [amcm + I )D5  + i T ( X ) D 2  + $ T ' ( X ) D  + T " ( X ) ] S ( X  - Y )  

( T ( X ) ,  J ( Y ) ]  = [ -J (X)D*  + $ J ' ( X ) D  - i J " ( X ) ]  S(X - Y )  

[ J ( X ) ,  T ( Y ) ]  = [ J ( X ) D 2  - i J ' ( X ) D  + J"(X)] 6(X - Y f  

[ J ( X ) ,  J ( Y ) )  = - [m(m + 1)D3 + 2 T ( X ) ]  6 ( X  - Y )  

(2.10) 

where we have written n = 2m + 1 and 6(X - Y) = 6(n - y)(O - w). 
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The first natural question one can think of is whether or not the above result remains 
true when the superpseudodifferential operators are used instead. By straightforward 
calculations, we can show that the answer is yes. In other words, as long as n is an 
odd integer, T and J ,  defined by (2.9). together obey the N = 2 super Virasoro algebra. 
What remains to be checked is if the required N = 2 supermultiplets can be defined as 
differential polynomials in the coefficient functions Uk. To this end, we need to consider 
the Hamiltonian flows defined by the two linear functionals 

(2.11) 

where If(x, el l  = I<(x, @)I = 0. We find that the transformations of L under the 
Hamiltonian flows defined by G and H are 

JGc) ( L X C ) + L  - L ( X c L ) +  

(2.12) 

JGH) = ( L X H ) + L  - L ( X H L ) +  

= [ - r o - ( m + 1 ) < ' ] ~ - ~ [ - < ~ - t m 5 ' ] .  

Since T is the super Vuasoro generator, J ( X c )  is called the super Virasoro flow. If the 
expicit forms of (2.12) are known, one can read off the corresponding brackets at once by 
using the formula 

(2.13) 

We shall prove in the next section that J ( X c )  in (2.12) is the infinitesimal form of the 
superconformal covariance of L. 

3. The superconformally covariant form of L 

In this section we give the super Virasoro flow J ( X c )  a geometrical interpretation and put 
L into a superconformally covariant form. We shall follow the construction established in 
[27,28]. Let us recall that on the (111) superspace with coordinate X = ( x , S ) ,  the most 
general superdiffeomorphism has the form 

i = g ( ~ )  + e K ( x )  B = X ( X )  + B B ( X )  (3.1) 

where Igl = IBI = 0 and I K I  = 1x1 = 1. The superdiffeormphism (3.1) is a superconformal 
transformation if 

D = ( D d ) B .  (3.2) 
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A function f ( X )  is called a superconformal primary field of spin h if, under 
superconformal transformation, it transforms as 

f(f) = (DB)-Zhf(X).  (3.3) 

We shall denote by FA the space of all superconformal primary fields of spin h. As usual, 
a superpseudodifferential operator A is called a covariant operator if it maps l$, to fi  for 
some h and 1. 

We study the covariance property of 

L = D" + U Z D " - ~  + U3DnW3 +. ' .  + U,, + U,+, D-I +., . (3.4) 

where we have set UI to be zero. Our aim is to see if some h and I can be found so that, 
under superconformal transformation X + f ,  

~ ( 2 )  = ( D ~ ) - ~ z ( x ) ( D B ) ~ ~ .  (3.5) 

As in the case of superdifferential operators, the constraint U1 = 0 determines both h and 
I [27,28]. In fact, simple algebras give (for any non-zero n)  

where 

(n = Zm) 
-2h-m (n=2m+1)  

A,-] = (3.7) 

Thus, U, = 0 can be preserved under superconformal transformation only when 

n = 2 m + 1  h = - i m  2 l = f ( m + l ) .  (3.8) 

In summary, we have the covariance condition 

~ ( 2 )  = (DB) - ("+] )L(X)  (OB)-". (3.9) 

The transformation laws for 9 ' s  are then completely determined by (3.9). For example, 
simple computations yield the expected transformation laws of J = U2 and T = U3 -;U;: 

J ( X )  = J ( i ) ( D i ) *  

T ( X )  = T ( 2 ) ( D 6 ) 3  + im(m + l)S(%, X) 

where S ( f ,  X) is the super Schwarzian defined by 

(3.10) 

(3.11) 

It is interesting to note that the 'central charge' c,,, = 4m(m + 1) in (3.10) does not 
change sign under the sign change of the leading order n = 2m + 1: m + -m - 1. To 
understand this point, let us consider the pair of superpseudodifferential operators 

~i = @"I + UIDiZmil-2 2 + u:~*hi1-3 + , , , (3.12) 
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We shall take L- to be the formal inverse of L+, i.e. 

L+L- = 1. (3.13) 

The most important point here is that (3.13) is invariant under superconformal transformation 
(3.9). Equality (3.13) has fixed the functional relations between the U: and U;. In fact, 
expanding the left-hand side of (3.13) yields 

U; = -U: U; = U: - (U:)'. (3.14) 

As a consequence, 

(3.15) 

It is elear now why the central charge remains unchanged under n --+ -n. We point out 
that the brackets (2.10) are invariant under J -+ -J .  So, the first of (3.15) would not 
harm these brackets. 

We show that the infinitesimal form of covariance condition (3.9) is nothing but the 
Hamiltonian flow J ( X G ) ,  defined by (2.11) and (2.12). First, we recall the most general 
infinitesimal form of superconformal transformation: 

z = x - € ( X )  - 9 q ( x )  

8 = e  - 4a,E(x)s - q ( x )  
(3.16) 

where 161 = 0 and 
that, for non-negative integer k [28], 

= 1. Defining c ( x )  = ~ E ( x )  + Sq(x ) ,  we can show by induction 

(6)' = D' + D[D',  $10 + [D', t1D2+ O(t2). (3.17) 

If one re-examines the proof for this equivalence, in the case of the superdifferential operator 
given in [28], one easily recognizes that (3.17) is the key formula. Therefore, to generalize 
this proof to the present case we need only to prove the validity of (3.17) when k is a 
negative integer. To check the validity, we start with k = -1. From D8 = 1 -v, we have 

6 - I  = D - ' ( D ~ )  

' - - D-' - D-'t'' 

= D-' - D-'[D*, t] 
= D-' - D e  + D-'.$D2 

= D-' + D [ D - ' ,  t l D  + ID-' ,  t1D2 

as dcsircd. Fork c -1, we can easily prove the validity by induction. With the validity of 
(3.17) for arbitrary integer k, the desired proof follows the proof of [28] mutatis mutandi. 
We therefore conclude that the infinitesimal form of (3.9) is indeed the super Virasoro 
ROW J ( X c ) .  
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To covariantize the superpseudodifferential operators, we briefly review the necessary 
set-up [27,28]. First, we introduce a Grassmanian odd function B ( X )  which transforms 
under superconformal transformation as 

We then make the following identification: 

Clearly, (3.19) defines nothing when m = 0, -1. This means that the covariantization 
program used here is not applicable to these two cases. As a matter of fact, it reflects that 
when the leading order is &I,  no N = 1 primary basis can be defined. We can actually 
verify this claim via the direct method of construction used in [18]. One should note that 
different B(X) 's  may actually define the same T ( X ) ,  as long as its variation SB satisfies 

(SB)" - (SB)'B - B'SB = 0. (3.20) 

The transformation law of B ( X )  enables us to introduce a covariant superderivative defined 
by 

6% e D - 2kB(X). (3.21) 

One can verify easily that 6, maps from Fk to Fk+i. Hence, the operator 

A 

= &+,-I &+1-2.. . D% ( I  > 0) 
(3.22) 

= [ D  - (2k + 1 -  l ) B ] [ D  - (2k+ 1 - 2)Bl ...[D - 2kBI 

maps from Fk to F ~ + J .  Obviously, we a~so  need the inverse operators of 
which are defined as 

( I  > 01, 

(3.23) 

With these definitions, we have the following formulae: 

62tSB = -8B62x-l + A B  (3.7-4) 

where SB is an arbitrary variation and A B  = D(SB)  - 'BSB 

(3.25) 

where SB is subjected to (3.20). By using (3.21)-(3.25), we can derive (which were derived 
in [27,28], only for positive m) 

(3.26) I &6$" = -SB(mb$-')  - AB + m - l)6$-* 
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and 

sBb2+l = - 8 ~  [(2k + m l h z ]  - A B  m ( 2  + m ) ~ ,  (3.27) [ 
Here, SB is subject to constraint (3.20). 

We now write the covariant form of L 
L = D2"'+l + + U3D"-' + . . . 

(3.28) 

where Wk is a superconformal primary field of spin 4 and 

The coefficients c$m+l) are determined by requiring that the right-hand side of (3.29) 
depends on B only through T .  In other words, they are solved from the recursion relations 
arising from the equations &A$+') = 0. However, since (3.26) and (3.27) are valid for 
all integers m, we expect that the recursion relations obtained for positive m 1281 remain 
valid for non-positive m. As a result, the formulae of up$"+" for positive m remain valid 
for non-positive m. Therefore, without any calculations, we have 

and 

(3.30) 

(3.31) 

Substitutions of (3.29)-(3.31) back into (3.28) give the desired decompositions of the 
coefficient functions Uk into differential polynomials in T and the N = 1 primary fields 

We have seen in this section that the generalization of the covariantization 
program established in [27,28] to the case of superpseudodifferentid operators is quite 
straightforward. Key formulae like (3.17), (3.26)-(3.31) remain unchanged. 

wk, 
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4. N = 2 Supermultiplets 

The existence of the N = 2 super Virasoro algebra (2.10) leads naturally to the conjecture 
that the N = 1 primary fields wk can be redefined in such a way that W ,  and WW+, 
(k 2 2) together form a N = 2 supermultiplet, i.e. under the spin-I flow J ( X H ) ,  defined 
by (2.11). they transform as 

Since there is no simple way to handle this flow, it is not even clear whether or not this 
conjecture holds in general for superdifferential operators. Hence, we shall restrict ourselves 
to a very limited goal. We shall just consider the negative part of a superpseudodifferential 
operator of positive leading order 2m + 1 (m > 0) and present a general observation on this 
problem. 

First, we observe that 

[J(X,)li = [-C'D - (m + I ) < ' ]  La - Li [-SO + mC'] (4.2) 

that is, the positive part L+ and the negative part L- transform independently under spin-1 
flow. Therefore, it is possible to consider only the negative part. Secondly, since for a 
given k 1, Uzm+* is a function of T and Wzm+l ( k  2 I ) ,  and since 

6yT = [ - J D 2  + qJ'D - i J " ]  t 
(4.3) 

J = [m(m + 1 ) 0 3  + ZT]  5 

Sy Wh+k must depend only on .I, T and Wh+l (k 2 I ) .  As a result, the possible redefinition 
of Wzm+k is of the form 

wh+k  = wh+k + f h + k ( J ,  wUn+l. WZm+2,. . . I w h + k - l )  (4.4) 

where f2m+k is a differential polynomial. For instance, based on the dimensional 
consideration, we have 

Wzm+2 = w2,+2 Wh+, = Wh+3 
(4.5) 

%m+r = Wh+4 +a JWzm+2 'c512m+5 = Wh+s  + b JW2mc3. 

It follows immediately from (4.5) that Wzm+z and Wh+3 must form a N = 2 supermultiplet 
if it exists at all. In the following, we verify that this is indeed true and determine the values 
of a and b which make Wh+4 and W h + 5  form a N = 2 supermultiplet. 

Using (3.30). (3.31) and the following identities: 

6; = o2 - B D  -UCB' 

D,  " 3  - - D 3 - ( 2 k + 1 ) B D z - ( 2 k + 1 ) B ' D - 2 k B " + 4 k ( k + 1 ) B B '  
(4.6) 

6:; = D-I + (m + 1)BD-2 - (m + I)B'D-' - [(m + 1)B" + (in + l)'B'B] F4 + . . . 
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we easily compute 

AE;:"(Wz,+z, T )  = Wm+zD-' + $W&+zD-' - IW'' 2 ,+2~-3  

Wh+2 [-JD2 + $J'D - $J"] 5.  
2(m + 1) 

+ m(2m + 3) 
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As expected, W2,+2 and W2,+3 indeed form an N = 2 supermultiplet, while at W%+4 
and St  was+^ both contain some unwanted terms. Therefore, we have to consider the 
redefinitions (4.5). In fact, we find 

Hence, the only choice is 

(4.14) 

With this choice, we verify 

(4.15) 1 -,, ~Y%,,,+s = [-(m +2)J%+4DZ + f*&,+$ - ~w,+,] t 
as we wished. 

We have thus identified the first two N = 2 supermultiplets in the negative part of L. 
It is natural to expect that all the desired supermultiplets actually exist. 

Finally, we present an observation on this identification problem. We shall show that, 
if all the required N = 2 supermultiplets can be defined when the leading order is 2m + 1 
(m can be either positive or negative), then they can also be defined when the leading order 
is -2m - 1. For definiteness, we assume, for a moment, that m =- 0. We use the notation 
defined by (3.12) and (3.15) and impose condition (3.13). We have observed in the previous 
section that (3.13) is invariant under superconformal transformation. We now recast this 
statement by means of the super Virasoro flows defined by the second Gelfand-Dickey 
bracket. Let S;L* denote the super Virasoro flows generated by T* via the respective 
second Gelfand-Dickey bracket. Then (3.13) implies 

= q - L - .  (4.16) 

The fact that T -  = T+, together with (4.16), leads to the statement that, under identification 
(3.13), the N = 1 primary fields which appear in the superconformally covariant form of 
L+ are still primary fields, even when the second Gelfand-Dickey bracket of L- is used 
instead. As a consequence, decompositions of the coefficients U: into N = 1 primary 
fields immediately induce decompositions of U; by the use of (3.13). Next we consider 
the spin-1 flows which we shall denote by 6fL*. Repeating the above steps yields 

6:L- = -L-(qL')L- 

= 6;L-. 

= [-<D+m<'] L- - L - [ - t D  - (m+ l ) f ]  (4.17) 

Now, since J -  = - J + ,  we conclude that the second Gelfmd-Dickey brackets of L+ 
and L- both lead to the same spin-1 flow (up to an overall sign) when the functional 
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H+ = [, J+< is used in either bracket. More explicitly, what we have shown so far is that, 
for any functional F ,  

( F ,  T - ( x ) ) -  = (F, T+(X)]+ = I F ,  T-(x)]+ 
(4.18) 

where ( , )* denotes the second Gelfand-Dickey bracket of L*, respectively. It is clear now 
that if Wu and Wa+z form an N = 2 supermultiplet with respect to { , )+, then they will 
also with respect to ( , )-. Therefore, once the required N = 2 supermultiplets have been 
identified for L+, the corresponding task for L- is automatically achieved. Interchanging 
the roles of Lt and L- obviously gives the proof for m c 0. This completes the proof for 
the above claim. 

(F, J - ( X ) ) -  = ( F ,  J + ( X ) ] +  = -IF, J - ( X ) } +  

5. Concluding remarks 

In this paper, we have discussed the N = 2 superalgebras arising from the second Gelfand- 
Dickey bracket of superpseudodifferential operators. We find that the forms of several 
formulae, derived previously for the case of superdifferentials, remain unchanged in this 
case. In other words, the generalization is straightforward. For example, formulae (3.30) 
and (3.31), obtained in [27,28], immediately give us the superconformally covariant form 
of superpseudodifferential operators. Hence, the biggest problem regarding the spectrum of 
these superalgebras is still the identification of N = 2 supermultiplets. Since the positive 
and negative parts of a superpseudodifferential operator transform independently under the 
super Virasoro flow as well as the spin-1 flow, unless the identification problem can be 
solved for pure superdifferentials, the resolution of this problem in the present case is not 
possible. We remark that, in [27,29], it is observed that when L = Ds+U2D3+. . .+Us, the 
N = ~ 1 primary fields arising from the Drinfeld-Sokolov-type matrix formalation [29,30] 
form precisely the desired N = 2 supermultiplets. One might suspect that the matrix 
formulation might be helpful in this problem. Hence, it seems worthwhile to discuss the 
spin-1 flow in the context of matrix formulation. Finally, we remark that it would be 
interesting to investigate all the possible reductions, contractions and trunctions of these 
W$-type superalgebras. Hopefully, some interesting W,-type superalgebras will emerge. 
Work in this direction is in progress. 
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